数学の基礎と公式-4.2
数学の基礎と公式
amazon kindle版を出版しました。
4. 微分-2
※$\log x$の$x$の箇所には絶対値がつきます。$\log | x |$
$\displaystyle{ }$
(1) $\displaystyle{\{\log(x^3+5x+2)\}'={{3\,x^2+5}\over{x^3+5\,x+2}}}$
(2) $\displaystyle{ (\log(x+\sqrt{x^2+1}))'={{1}\over{\sqrt{x^2+1}}} }$
(3) $\displaystyle{ \left(\dfrac{1}{4} \log(\dfrac{x-2}{x+2}) \right)' = {{1}\over{4\,\left(x-2\right)}}-{{1}\over{4\,\left(x+2\right)}} }$
(4) $\displaystyle{ \left(\log \sqrt{\dfrac{1+x^2}{1-x^2}} \right)' = -{{2\,x}\over{x^4-1}} }$
(5) $\displaystyle{ (e^\frac{1}{x^2})'=-{{2\,e^{{{1}\over{x^2}}}}\over{x^3}} }$
(6) $\displaystyle{ (x^2 e^x)'=x^2\,e^{x}+2\,x\,e^{x} }$
(7) $\displaystyle{( x^2 e^\frac{1}{x})'= 2\,x\,e^{{{1}\over{x}}}-e^{{{1}\over{x}}} }$
(8) $\displaystyle{ (4^{5x})'=5\,\log 4\,\times 4^{5\,x} }$
(9) $\displaystyle{ (y^{\sqrt{x}})'={{y^{\sqrt{x}}\,\log y}\over{2\,\sqrt{x}}} }$
(10) $\displaystyle{ (\sin ^{x}x)'=\sin ^{x}x\,\left(\log \sin x+{{x\,\cos x}\over{\sin x}}\right) }$
(11) $\displaystyle{ (\cos ^{x}x)'=\cos ^{x}x\,\left(\log \cos x-{{x\,\sin x}\over{\cos x}}\right) }$
(12) $\displaystyle{ (\tan ^{x}x)'=\tan ^{x}x\,\left(\log \tan x+{{x\,\left(\sec x\right)^2}\over{ \tan x}}\right) }$
(13) $\displaystyle{ \left( \dfrac{\log(x)}{x^2}\right)'={{1}\over{x^3}}-{{2\,\log x}\over{x^3}} }$
(14) $\displaystyle{ (\log(\sin x ))'={{\cos x}\over{\sin x}} }$
(15) $\displaystyle{ (\log(\cos x ))'=-{{\sin x}\over{\cos x}} }$
(16) $\displaystyle{ (\log(\tan x ))'={{\left(\sec x\right)^2}\over{\tan x}} }$
(17) $\displaystyle{ (e^{-x} \sin x)' =e^ {- x }\,\cos x-e^ {- x }\,\sin x }$
(18) $\displaystyle{ (e^{-x} \cos x)' =-e^ {- x }\,\sin x-e^ {- x }\,\cos x }$
(19) $\displaystyle{ (e^{-x} \tan x)' =e^ {- x }\,\left(\sec x\right)^2-e^ {- x }\,\tan x }$
(20) $\displaystyle{ \left(\log \dfrac{\sqrt{x+5}+\sqrt{x+7}}{\sqrt{x+5}-\sqrt{x+7}} \right)' ={{1}\over{\sqrt{x+5}\,\sqrt{x+7}}} }$
(21)
(22)
(23)